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Abstract

Thermal modeling down to great depth, e.g. down to the Mohorovicic discontinuity, requires representative values of thermal

conductivity and thermal capacity at an appropriate depth. Often there is a lack of data, especially concerning temperature and

pressure dependence of thermal conductivity and thermal capacity, due to missing or questionable data from boreholes. Studies of

the temperature and pressure dependence of thermal conductivity and thermal capacity showed that temperature is dominating.

Thus measurements on a set of magmatic, metamorphic and sedimentary rocks sampled from different depth levels of the Eastern

Alpine crust were used to obtain an estimate of the temperature dependence of both properties––at least for the area of investi-

gation––and to give a review of the temperature dependence of thermal conductivity (k), thermal capacity (q� cp) and thermal

diffusivity (j) for different types of rock.
The temperature dependence of thermal conductivity for crystalline (magmatitic and metamorphic) rocks is different to that of

sedimentary rocks. Using the approach that the thermal resistivity (1=k) is a linear function of temperature whose slope increases

with kð0Þ, the conductivity at a temperature of 0 �C, two general equations were determined. The equation for crystalline rocks was
verified in the temperature range of 0–500 �C and the equation for sedimentary rocks was tested in the temperature range from 0 to

300 �C. A general equation for the temperature dependence of k for Eastern Alpine rocks can thus be formulated:

kðT Þ ¼ kð0Þ
0:99þ T ða� b=kð0ÞÞ

with empirical constants and corresponding uncertainties a ¼ 0:0030� 0:0015 and b ¼ 0:0042� 0:0006 for crystalline rocks. The

constants for corresponding sedimentary rocks are a ¼ 0:0034� 0:0006 and b ¼ 0:0039� 0:0014. k is given in Wm�1 K�1, T in �C.
At ambient conditions thermal diffusivity (j) and thermal conductivity (k) for Eastern Alpine crystalline rocks show the rela-

tionship:

j ¼ 0:45� k:
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1. Introduction

As a part of the European multidisciplinary TRAN-

SALP campaign to investigate the Eastern Alpine oro-

genic processes (TRANSALP Working Group, 2002), a

project was set up to (1) obtain a complete data set of

the thermophysical properties of the main rock units of

the Eastern Alpine crust and (2) model the steady state

conductive heat transport. Due to the lack of rock
samples from deep boreholes, we took advantage of the

complex tectonics, which yield representative outcrops

of rocks from nearly all depth levels of the Eastern

Alpine crust. According to the resolution of the finite

element grid the main sampling criterion for each rock

unit was an estimated minimum thickness of 1 km in the

cross section along our profile. We performed labora-

tory measurements of thermal conductivity, specific heat
capacity, density, and porosity on this collection of

newly gained rock samples from 26 different substantial

*Corresponding author. Tel.: +49-241-80-96773; fax: +49-241-80-

92132.

E-mail address: h.vosteen@geophysik.rwth-aachen.de (H.-D. Vos-

teen).

1474-7065/03/$ - see front matter � 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S1474-7065(03)00069-X

Physics and Chemistry of the Earth 28 (2003) 499–509

www.elsevier.com/locate/pce

ARTICLE IN PRESS



rock units of the Eastern Alps. We also determined the

temperature dependence of thermal conductivity kðT Þ
and specific heat capacity cpðT Þ. Concerning the tem-

perature dependence of thermal conductivity, a coupled

effect of mineralogical composition and temperature can

be assumed whenever the thermal resistivity (1=k) is a
linear function of temperature whose slope increases
with kð0Þ, the conductivity at a temperature of 0 �C.

A general equation for kðT Þ was set up by Sass et al.

(1992) which is based on the coupled effect of compo-

sition and temperature on thermal conductivity. In or-

der to determine this relation for crystalline rocks, Sass

et al. (1992) used thermal conductivity data from six

different granites measured by Birch and Clark (1940)

up to a maximum temperature of 200 �C. The equation
was further successfully verified for an independent set

of different magmatic and metamorphic rocks from the

Valles Caldera (Sibbitt et al., 1979) for temperatures

ranging from 25 to 250 �C.
Above a certain temperature, this equation leads to

large deviations from the measured values. This results

from the heat transfer by radiation, which becomes im-

portant for single crystals at temperatures of approxi-
mately 200 �C and for polycrystals at approximately 600

�C (Clauser, 1988; Clauser and Huenges, 1995).

In this study we attempted to (a) check the adapt-

ability of the existing coefficients of Sass et al. (1992) for

our newly gained rock samples and (b) determine new

coefficients to extend the temperature range for the

equation of Sass et al. (1992) for both crystalline and

sedimentary rocks of the Eastern Alps.
Different approaches to calculate kðT Þ were devel-

oped by Zoth and H€aanel (1988) and Seipold (1998, 2001)
and will be discussed in detail. Pribnow et al. (2000)

studied kðT Þ for water saturated marine sedimentary

rocks for temperatures from 0 to 60 �C. In this tem-

perature interval for marine sedimentary rocks with a

low thermal conductivity at ambient conditions (krt)
they found that thermal conductivity increases with
temperature. For rock samples with intermediate values

of krt thermal conductivity remains unchanged with

temperature and decreases with temperature for rocks

with high krt. Pribnow et al. (2000) maintain that this

behavior is due to a positive temperature coefficient for

seawater (k increases with T ) and a negative coefficient

for the rock matrix (k decreases with T ). As we studied
the temperature dependence of thermal conductivity for
dry rock samples only, and at much higher tempera-

tures, our results are not directly comparable to those of

Pribnow et al. (2000) but rather complement their study

in respect to the larger temperature range.

Thermal diffusivity j is the ratio of thermal conduc-

tivity k and thermal capacity q� cp. Thus our data set

also permits a discussion on the variation of thermal

diffusivity with temperature for different rocks of the
Eastern Alps.

2. Measured properties

We collected a total of 118 rock samples for thermal

property measurements in a campaign at 26 locations

along the TRANSALP-profile (Fig. 1) during the sum-

mer of 1999. On these specimens bulk density qb, rock
density qr, heat production rate, specific heat capacity cp
and thermal conductivity k of dry and of water satu-

rated rock were determined in the laboratory. Addi-

tional information concerning measurement techniques

is summarized in the Appendix A. For further details on

the sampling strategy and on measurements of the heat

production rate refer to the companion paper by Vos-

teen et al. this issue.

2.1. Rock density and porosity

Both rock density and bulk density were determined

of all rock samples. Rock density qr is defined as the

ratio of the dry mass M of a rock and the pure rock

volume Vr excluding the volume of any cavities. By

contrast, bulk density qb is defined as the ratio of the dry
rock mass M and the bulk rock volume Vb including the
volume of all cavities in the rock.

Rock porosity / can be determined from rock and

bulk density according to:

Fig. 1. TRANSALP profile (dotted line) and sampling locations 1–26

(from north to south).
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/ ¼ qr � qb
qr

¼ M
Vr

�
�M
Vb

��
M
Vr

¼ ðVb � VrÞ
Vb

ð1Þ

Porosity varies for the studied sedimentary rock

samples from 0.9% (L4, dolomitic limestone, L7 impure

limestone) to 5.7% (L1, sandy-clayey limestone) and for

magmatic and metamorphic rocks porosity ranges from

1.0% (L6, muscovite–chlorite–carbonate–quartz–phyl-

lite) to 4.7% (L22, biotite–dacite) (see Tables 1 and 2).

2.2. Thermal conductivity at ambient conditions

Thermal conductivity is isotropic, to a good ap-

proximation, for many volcanic and plutonic rocks

(Clauser, 1988; Clauser and Huenges, 1995). In contrast

to this, thermal conductivity of some sedimentary and

many metamorphic rocks is strongly anisotropic. The

thermal conductivity of rocks in general decreases with

temperature, in contrast to some amorphous or fused
materials such as obsidian. The latter will not be dis-

cussed in this study.

First, thermal conductivity was determined of all rock

samples at ambient temperature of 25 �C with a needle

probe (Pribnow, 1994; Popov et al., 1999) which was

aligned in different directions to determine anisotropy.

To take into account the effects of porosity, thermal

conductivity was measured on water-saturated and dry
rock samples. Generally it can be assumed that mea-

surements of the wet rock sample yield more realistic
results, since the pore volume in situ is usually water-
saturated.

Table 1

Rock types and associated geological units

Location no. Petrography of sample Geological unit

1 Sandy-clayey limestone (‘‘Rupelton’’) Molasse (sediment cover European plate)

2 Limy sandstone Molasse (sediment cover European plate)

3 Fine grained dolomite (‘‘main-dolomite’’) Northern calcareous Alps (cover Adriatic Plate)

4 Dolomitic limestone (‘‘Wetterstein limestone’’) Northern calcareous Alps (cover Adriatic Plate)

5 Muscovite–chlorite–schist (‘‘Wildsch€oonauer Schist’’) Basement Adriatic plate

6 Muscovite–chlorite–carbonate–quartz–phyllite Basement Adriatic plate

7 Impure limestone (‘‘Hochstegen-marble’’) Tauern Window (basement European plate)

8 Microcline–plagioclase–quartz–biotite–muscovite–ortho-gneiss Tauern Window (basement European plate)

9 Garnet–bearing ortho-amphibolite Tauern Window (basement European plate)

10 Garnet–biotite–(ortho?)-amphibolite Tauern Window (basement European plate)

11 Muscovite–biotite–garnet–epidote–ortho-gneiss Tauern Window (basement European plate)

12 Garnet–biotite–muscovite–graphite–chlorite–schist Tauern Window (basement European plate)

13 Muscovite–biotite–garnet–plagioclase–potassium–feldspar–ortho-gneiss Tauern Window (basement European plate)

14 Biotite–muscovite–potassium–feldspar–schist Basement Adriatic plate

15 Biotite–muscovite–tourmaline–calcite–schist Oceanic plate-fragment

16 Garnet–amphibole–biotite–para-gneiss Basement Adriatic plate

17 Garnet–ortho-amphibolite Basement Adriatic plate

18 Garnet–biotite–potassium–feldspar–plagioclase–(para?)-gneiss Basement Adriatic plate

19 Monzogranite/granodiorite (‘‘granite of Brixen’’) Basement Adriatic plate

20 Garnet–biotite–sericite–phyllite Basement Adriatic plate

21 Very pure dolomite (‘‘Schlern-dolomite’’) Dolomites (coverage Adriatic plate)

22 Biotite–dacite (‘‘quartz-porphyry’’) Dolomites (coverage Adriatic plate)

23 Quartz–monzonite Basement Adriatic plate

24 Red potassium–feldspar–granite Basement Adriatic plate

25 Biogene dolomite (‘‘main dolomite’’) Dolomites (coverage Adriatic plate)

26 Granodiorite (‘‘Cima d�Asta granite’’) Basement Adriatic plate

Table 2

Bulk density (q) and porosity (/) (sd means standard deviation)

Location no. q (kgm�3) sd q (kgm�3) / (%) sd / (%)

1 2590 20 5.7 0.6

2 2620 70 3.6 2.3

3 2810 100 1.4 1.0

4 2700 40 0.9 0.9

5 2670 30 2.6 1.1

6 2790 20 1.0 1.0

7 2710 40 0.9 0.8

8 2660 10 2.0 0.7

9 2910 20 1.1 0.6

10 2870 80 2.2 1.2

11 2610 40 2.5 1.3

12 2720 20 3.8 0.3

13 2700 20 1.2 1.3

14 2610 40 4.6 1.4

15 2680 50 2.1 1.4

16 2680 30 2.5 0.8

17 2950 50 1.4 1.2

18 2710 60 2.0 1.3

19 2620 30 1.1 0.7

20 2740 60 1.1 0.7

21 2790 50 1.9 1.7

22 2560 70 4.7 2.4

23 2830 40 1.6 0.5

24 2540 40 3.1 1.5

25 2770 30 1.7 1.2

26 2740 20 1.9 0.2
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All rock samples were cut to obtain two discs (1)

parallel to the plane of bedding or schistosity and (2)

perpendicular to the plane of bedding or schistosity.

Measurements on disc (1) were carried out both

parallel and normal to the optical axis of elongated

minerals. On disc (2) thermal conductivity was deter-

mined both parallel and normal to the plane of bedding
or schistosity of the rock.

Whenever no bedding or schistosity was visible (e.g.

very homogeneous sedimentary rocks or plutonic

rocks), two discs in orthogonal directions were cut.

For Eastern Alpine rocks maximum values of thermal

conductivity were determined parallel to (1) the optical

axis of a mineral or (2) bedding, foliation or schistosity.

Measurements normal to (1) the optical axis of a min-
eral or (2) bedding, foliation or schistosity yield mini-

mum values of thermal conductivity.

Thus we can discriminate between (1) mineral-

anisotropy depending on the arrangement of mineral

particles (lineation) in the rock sample and (2) shape-

anisotropy, occurring parallel and perpendicular to the

plane of bedding, foliation or schistosity of a rock vol-

ume. Mineral-anisotropy is due to an equal growth
orientation of minerals in the rock (e.g. elongated and

orientated amphiboles). Shape-anisotropy is due to a

change of material (e.g. alternating quartz- and feldspar-

or mica-layers) inside a sedimentary or metamorphic

rock.

The anisotropy factor (af) is defined by the ratio of

parallel and normal components of thermal conductivity

(Cermak and Rybach, 1982).

afmineral ¼ kparðlineationÞ
knormðlinationÞ

; afshape ¼ kparðfoliationÞ
knormðfoliationÞ

ð2Þ

The variance of values, average values and anisotropy

factors of thermal conductivity was determined and

calculated both for lineation (Fig. 2a) and foliation (Fig.

2b).

In absence of visible layering or foliation the anisot-
ropy factor of thermal conductivity was calculated from

the ratio of the higher and lower average value of

thermal conductivity.

A sample is isotropic when it has an anisotropy factor

of 1. Anisotropy factors lower than 0.9 or higher than

1.1 indicate a bedding, foliation or lineation with a

significant effect on thermal conductivity. The highest

anisotropy factor of approximately 1.6 (Fig. 2b) was
asserted for the garnet–biotite–muscovite–graphite–

chlorite–schist from the Tauern Window (L12) while

especially effusive and intrusive magmatic rocks of the

Adriatic basement (L22, L23, L24, L26) show nearly

isotropic thermal conductivity properties.

The highest thermal conductivity values of around 6

Wm�1 K�1 were determined for dolomites from the lo-

cations L3 and L21 (Table 1). The high thermal con-
ductivity values for dolomites from the Eastern Alps

corresponds nicely with literature data (see also Clauser

and Huenges, 1995).

High anisotropy of thermal conductivity of rocks

with visible foliation (metamorphic rocks) can probably

be interpreted as an alternation of strong and weak-

conductive layers (e.g. quartz––or feldspar––respective
mica-layers) or a high content of oriented minerals with

strong anisotropy (e.g. mica).

2.3. Temperature dependence of thermal conductivity

The temperature dependence of thermal conductivity

was studied on dry samples for temperatures ranging

from 0 to 500 �C using a divided bar device. Due to the
increased inter-granular contact resistance within the

dry rock samples, thermal conductivity at ambient

conditions for these measurements is usually lower than

that determined by the needle probe on the water-satu-

rated rocks. Fig. 3a and b shows the coupled effect of

mineralogical composition and temperature for mag-

matic rocks (L9, L19, L22, L23; see Table 1), meta-
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Fig. 2. Scattering of laboratory measurements of the thermal con-

ductivity (vertical bars), mean values (symbols) and anisotropy factors

(squares) of 26 suits of water saturated rocks at ambient conditions (25

�C): plane of measurement (a) parallel and normal to lineation; (b)

parallel and normal to bedding, foliation or schistosity of the rock.
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morphic rocks (L6, L10, L11, L12, L14, L16, L17) and

sedimentary rocks (L1, L2, L4, L5, L21). For rocks with

a large thermal conductivity at ambient conditions (krt)
the decrease in thermal conductivity with temperature is

more pronounced than for rocks with a low krt. As
anisotropy of the rock matrix usually decreases with
increasing temperature (Seipold, 2001), it becomes neg-

ligible at high temperatures. Therefore it was not con-

sidered in our study.

2.4. Temperature dependence of thermal capacity

The thermal capacity is the product of density q and

specific heat capacity cp. Specific heat capacity cp at
constant pressure was determined as a function of

temperature for at least one rock sample from each rock

unit using a dynamic differential heat flow calorimeter

from ambient temperatures to 300 �C, the maximum

temperature range of the device. Fig. 4a shows the mean

values of these measurements for magmatic, metamor-

phic, and sedimentary rocks (same rock samples as Fig.

3a and b; Table 1). Specific heat capacity measured at
ambient conditions ranges from 740 to 850 J kg �1 K�1

and is highest in sedimentary rocks. It increases with

temperature to maximum values of around 1050

J kg �1 K�1 (Fig. 4a). Since the thermal cubic expansion

coefficient is very small for rocks, the density was re-

garded as constant over the temperature range of 1–300
�C. The specific heat capacity cp and the thermal ca-

pacity (q� cp) as a function of temperature (Fig. 4a and
b) differ by a constant factor only––the density q––
which depends solely on the sample (rock composition).

It increases with temperature from around 2 · 106
Jm�3 K�1 at ambient temperature to maximum values

of 3 · 106 Jm�3 K�1 (Fig. 4b) at a temperature of 300 �C.

2.5. Temperature dependence of thermal diffusivity

The thermal diffusivity describes the equilibration of

a temperature imbalance. It is a function of thermal

conductivity k, density q and specific heat capacity cp at
a constant pressure:
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Fig. 4. Mean values and ranges of variation of (a) specific heat ca-

pacity cp at constant pressure and (b) thermal capacity (q� cp) as a
function of temperature of for magmatic, metamorphic, and sedi-

mentary rocks. The sampling rate of the device is DT ¼ 0:05 K. For

better visualization mean values of data points (symbols) as well as

minimum and maximum value (bars) are displayed in an interval of

30 K.
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Fig. 3. Mean values (symbols) and ranges of variation (vertical bars)

of thermal conductivity k with temperature for (a) magmatic and

metamorphic and (b) sedimentary rocks.
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j ¼ k
q� cp

ð3Þ

Fig. 5a shows the values of thermal diffusivity in the

temperature range of 1–300 �C.
The thermal conductivity decreases with tempera-

ture (Fig. 3a and b) while the specific heat capacity

(Fig. 4a) increases with temperature. Since in Eq. (3)

thermal conductivity is in the numerator and specific

heat capacity in the denominator, thermal diffusiv-
ity decreases more than thermal conductivity with

temperature (Fig. 5a). The thermal conductivity de-

creases between 25% and 44% in the temperature

interval 1–300 �C, the thermal diffusivity however by

42–54%.

In Fig. 5b thermal diffusivity at ambient temperature

is plotted versus thermal conductivity. A linear regres-

sion yields a slope (see function 3) of 1=ðq� cpÞ ¼
1=ð2:2� 106 Jm�3K�1Þ. This agrees with Beck�s (1988)
result ðq� cpÞ ¼ ð2:3� 106 Jm�3K�1Þ � 20%.

3. Developing a general equation for kðTÞ

In the following, we use an approach similar to Sass

et al. (1992) to obtain values for thermal conductivity

for different crystalline rocks from the Eastern Alps.

Based on the results for metamorphic rocks (gneisses,

amphibolites and phyllites: L6, L10, L11, L14, L16,
L17) and magmatic rocks (L9, L19, L22, L23) we plot

the normalized thermal resistivity kð0Þ=kðT Þ versus

temperature (Fig. 6a). Linear regression yields slopes

and intercepts for all rocks studied. The average inter-

cept of 0.99 yield an error of ±1%. From linear regres-

sion of the slope versus thermal resistivity 1=kð0Þ we

then obtained the coefficients for crystalline rock sam-

ples (Fig. 6b). The resulting equation for kðT Þ for
magmatic and metamorphic rocks is:

kð0Þ ¼ 0:53kð25Þ þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:13ðkð25ÞÞ2 � 0:42kð25Þ

q
ð4Þ

kðT Þ ¼ kð0Þ
0:99þ T ða� b=kð0ÞÞ ð5Þ

with a ¼ 0:0030� 0:0015 and b ¼ 0:0042� 0:0006.
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Fig. 5. (a) Mean values (symbols) and ranges of variation (vertical

bars) of thermal diffusivity as a function of temperature and (b)

thermal diffusivity as a function of thermal conductivity for magmatic,

metamorphic, and sedimentary rocks.
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The TRANSALP data set (L1, L2, L4, L5, L21) and

supplementary data from measurements of 23 lime-

stones, dolomites and sandstones from the Molasse

Basin (Clauser et al., 2002) were used to determine co-

efficients for a general equation for kðT Þ for sedimentary

rocks as well. A first metamorphosis of sedimentary

rocks occurs at temperatures of around 300–350 �C
(matching a depth level of 10–12 km). Thus we verified

the equation for temperatures from 0 to 300 �C. The
equation for kðT Þ of sedimentary rocks was determined

in the same way (as described above) and can be for-

mulated as:

kð0Þ ¼ 0:54kð25Þ þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:16ðkð25ÞÞ2 � 0:39kð25Þ

q
ð6Þ

kðT Þ ¼ kð0Þ
0:99þ T ða� b=kð0ÞÞ ð7Þ

with a ¼ 0:0034� 0:0006 and b ¼ 0:0039� 0:0014.
Above 500–600 �C a linear fit of (1=k) is no longer

permissible because of the increasing importance of heat

transfer by radiation (Clauser and Huenges, 1995).

Therefore, we studied the temperature dependence of

thermal conductivity for crystalline rocks in the tem-

perature range of 0–500 �C. The coefficients of Sass et al.
(1992) for different crystalline rocks from the TRAN-

SALP data set yield good results for temperatures up to

300 �C but show systematic differences for temperatures
above 300 �C (Fig. 7a). Applying Eq. (5) to the

TRANSALP data set shows a maximum error of 15%

for the temperature range 300–500 �C.
For different sedimentary rocks the corresponding

comparison of thermal conductivity calculated with the

coefficients of Sass et al. (1992) and measured values

shows a deviation of approximately 10% for tempera-

tures below 80 �C (Fig. 7b). For higher temperatures,
the deviation between calculated and measured values

rises systematically. Therefore the coefficients for crys-

talline rocks of Sass et al. (1992) can no longer be used

for sedimentary rocks. The coefficients of this study (Eq.

(7)) yield a maximum error of +8/)34% in the temper-

ature range 150–300 �C (Fig. 7b).

4. Comparison with other expressions for thermal con-

ductivity

A frequently used general empirical equation for the

temperature dependence of thermal conductivity was

given by Zoth and H€aanel (1988). They postulated the

temperature dependence of thermal conductivity kðT Þ to
be:

kðT Þ ¼ A
ð350þ T Þ þ B ð8Þ

where A and B are coefficients which depend on the type

of rock (k in Wm�1 K�1, T in �C).
Based on measurement on different rock types in the

range 0–800 �C they calibrated the empirical equations:

kðT Þ ¼ 705

ð350þ T Þ þ 0:75 ð9Þ

for metamorphic rocks (e.g. amphibolite, phyllite);

kðT Þ ¼ 807

ð350þ T Þ þ 0:64 ð10Þ

for acid rocks (e.g. granite, granodiorite, quartz por-

phyry);

kðT Þ ¼ 474

ð350þ T Þ þ 1:18 ð11Þ

for basic rocks (basalt, gabbro);

kðT Þ ¼ 1293

ð350þ T Þ þ 0:73 ð12Þ

for ultrabasic rocks (dunite, olivinite, peridotite);
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Fig. 7. Deviation of k (measured) and k (calculated) versus tempera-

ture for different crystalline and sedimentary rocks (ordinate: k (mea-

sured)) k (calculated) in percent). Open diamonds: calculated with the
coefficients of Sass et al. (1992); black crosses calculated with coeffi-

cients of this study (shading): (a) crystalline rocks; (b) sedimentary

rocks.
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kðT Þ ¼ 1073

ð350þ T Þ þ 0:13 ð13Þ

for limestone.

Excluding salt and ultrabasic rocks, they summarized

the average temperature dependence of thermal con-

ductivity for different rocks as:

kðT Þ ¼ 770

Bð350þ T Þ þ 0:7 ð14Þ

Comparing Eq. (5) with the equations of Zoth and
H€aanel (1988) we can see that for different types of

rock––including ultrabasic rocks the equation of this

study yields nearly the same results as the respective

equations of Zoth and Haenel (Fig. 8a and b). This also

confirms that our approach of using a suite of both

magmatic and metamorphic rocks from different crustal

levels from the Eastern Alps yields a good estimate for a

general equation of kðT Þ for crystalline rocks.
However, Eq. (7) cannot be applied to determine kðT Þ

for salt rocks due to the higher temperature dependence

of salt compared to other sedimentary rocks (Fig. 8b).

The comparison of Eq. (5) and that of Sass et al.

(1992) shows slight differences especially for acid, basic

and metamorphic rocks (Fig. 8c). Similar to the different

equations of Zoth and Haenel, Eq. (5) shows a stronger

decrease of thermal conductivity with temperature
above 200 �C.

Seipold (1998, 2001) used different expressions for the

temperature dependence of thermal conductivity. He

used a large number of measurements and additional

literature data to determine a linear decrease of kðT Þ. A
temperature function can thus be written as:

kðT Þ ¼ 1

BðT � 532� 45Þ þ 0:448� 0:014 ð15Þ

with a linear correlation coefficient of R ¼ �0:84.
B is a coefficient which depends on rock type and T , is

temperature in K. The linear fit of kðT Þ shows a slight

variation of around 0.5 W/mK compared to the results

of Eq. (5) (Fig. 9a).

For many rocks Seipold obtained a better fit of the

data with the equation:

kðT Þ ¼ T
F ðT � 314� 35Þ þ 122� 20 ð16Þ

with a linear correlation coefficient R ¼ �0:75.
For temperatures above 600 �C Seipold implemented

an additional cubic term C0 � T 3 to take into account

the contributions of electromagnetic radiation. The re-

spective expression can be written as:

kðT Þ ¼ 1

ðA0 þ B0 � T Þ þ C0 � T 3 ð17Þ

with different coefficients A0, B0 and C0 for different types
of rock. The comparison of Eqs. (5) and (17) (Fig. 9b)

shows that above 100 �C the curves for rocks with either

very large or very low thermal conductivity at ambient

conditions differ significantly. The fit of Seipold for these

rocks leads to a smaller decrease in thermal conductivity
with temperature than ours. As Seipold (2001) specifies

the standard deviation of the fit of all curves to the

measured data to be �0.3 Wm�1 K�1, the deviation to

our curve would most certainly be lower if the measured

data were grouped according to the procedure in this

study.
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Fig. 8. Comparison of the equations of this study with different gen-

eral equations for kðT Þ. Lines correspond to Eq. (5) and (7) and

symbols to: (a) Zoth and H€aanel (1988) different crystalline rocks; (b)

Zoth and H€aanel (1988) sedimentary rocks, (c) Sass et al. (1992) dif-

ferent crystalline rocks.
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5. Conclusions

We find that the thermal conductivity at 0 �C char-

acterizes the temperature dependence of thermal con-
ductivity for different types of rock. There is no

substantially different behavior for different rock types.

This is also observed for different sedimentary rocks.

Because genesis and mineralogical composition of these

two rock-categories are fundamentally different, two

separate sets of coefficients are necessary. We verified

the equation of Sass et al. (1992) using the TRANSALP

data––and show that the original coefficients of Sass et
al. (1992) can be used to estimate the temperature de-

pendence of thermal conductivity for crystalline rocks

up to 300 �C. Above 300 �C the coefficients of Sass et al.

(1992) yield an error that increases with temperature.

Using the coefficients of Sass et al. to determine kðT Þ for
sedimentary rocks also yields errors. For temperatures

above 300 �C, the coefficients of this study for kðT Þ of
crystalline rocks yield an improved fit to the data set
from the Eastern Alps. The corresponding equation for

kðT Þ for different types of sedimentary rock also fits the

data better than that of Sass et al. (1992) and yields fits

comparable to that of Zoth and H€aanel (1988).
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Appendix A. Measurement techniques

The rock volume was determined with a gas dis-
placement pycnometer. This instrument measures the

volume of solid objects of irregular shape, whether

powdered or coherent. The gas displacement pycnome-

ter consists of a calibrated and helium-filled sample

chamber and an expansion chamber, both connected by

a valve. The chamber containing the sample is then filled

with helium up to a high pressure. When the closed

valve is opened, the pressure will drop to an interme-
diate value. The rock volume of the sample is then de-

termined by measuring the change in pressure and

temperature of the calibrated volume of both chambers,

using the mass balance equation. The device then uses

the rock volume and the weight of the sample to cal-

culate the rock density. To calculate the bulk density of

a rock sample, a quantity of a free-flowing dry medium

(e.g. ‘‘DryFlo’’) is placed in a sample chamber and its
volume is measured. A rock sample is then placed in the

chamber with the medium, and the volume is measured

again. Because the free-flowing dry medium does not

enter the rock�s pores, the difference between the two

measurements is the displacement volume of the sample

including its pores. The envelope volume and the weight

of the rock sample are then used to calculate its ‘‘en-

velope’’ or bulk density.
We measured thermal conductivity at an ambient

temperature of approximately 25 �C on all rock samples

(b)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 100 200 300 400 500

T (˚C)

λ
(W

m
-1

K-1
)

basic rocks
acid rocks

ultrabasic rocks
metamorphic rocks

(a)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 100 200 300 400 500
T (˚C)

λ
(W

m
-1

K-1
)

amphibolites
felsic granulites
granites
mafic granulites
gneisses
peridotites
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kðT Þ according to Seipold (1998). Lines are results from Eq. (5),

symbols are results from Seipold (1998) and Seipold (2001): (a) Eq.

(15); (b) Eq. (17).
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(water saturated and dry) with a needle probe (Pribnow,

1994; Popov et al., 1999). This method was chosen

primarily because of its easy use and simple sample

preparation. In addition, thermal conductivity was de-

termined up to 500 �C using a divided bar device. This

technique is highly specific and time consuming, in

particular at elevated temperatures. Sample preparation
can be difficult and problems were encountered with a

couple of samples. Therefore, these measurements were

performed on a selected set of rock samples, represent-

ing the main rock units.

There are two major differences between needle probe

measurements and the divided bar (Pribnow et al., 2000,

appendix): (1) the needle probe method is a transient

while the divided-bar is steady-state; (2) the divided-bar
measurements yield thermal conductivity in the direc-

tion parallel to the divided-bar axis, whereas the needle

probe method yield thermal conductivity in a plane

perpendicular to the needle probe axis.

The needle probe is based on the theory of a line

source in an infinite medium (Carslaw and Jaeger, 1947,

section 10.4). In practice, it is a needle probe embedded

in and flush with the surface of a material of very low
thermal conductivity (Pribnow and Sass, 1995). This

device is known as half-space line source. It is a portable

advanced development of the version used in the field

laboratory at the super-deep drill hole (KTB) in Ger-

many. Data analysis is described in detail by Huenges

et al. (1990). The needle probe consists of a cylindrical

probe of 2 mm in diameter and 70 mm in length. A

thermometer at the centre of the needle probe records
the probe temperature. According to Kappelmeyer and

Haenel (1974, section 4.1), the probe length can be as-

sumed to be infinite. The needle probe is embedded in a

cylindrical block of transparent plastic such as ‘‘Plexi-

glass’’ or ‘‘Perspex’’. The heat propagation into the

sample is approximately 6–12 mm (Honarmand, 1993)

depending on the thermal conductivity of the material.

This was taken into account selecting and preparing the
sample. Needle probe measurements return a scalar

value of thermal conductivity from a plane perpendic-

ular to the needle probe axis. For anisotropic material it

is theoretically possible to obtain the principal values of

the thermal conductivity tensor. Theory, practical ex-

periences and uncertainty of such measurements are

discussed in detail in Grubbe et al. (1983) and Popov

et al. (1999).
The divided-bar (Beck, 1988) is a steady state com-

parative method to determine thermal conductivity of

solid rock samples or a cylindrical cell (Sass et al.,

1971) containing water-saturated material, which may

be loose. The latter technique is only viable at low

temperatures (0–60 �C) (Pribnow et al., 2000, appen-

dix).

The basic concept of this method is to compare the
unknown thermal conductivity of a rock sample to the

known thermal conductivity of reference material. The

sample and reference materials are shaped into discs

with a diameter of 50 mm and approximately the same

thickness (10 mm). The reference material is pyroce-

ram, which has a conductivity comparable to that of

rock samples. The heat flows parallel to the divided-

bar axis (stack) from a heater A (high temperature
level) to a second heater B (low temperature level)

through two reference disks and the sandwiched rock

sample. The radial heat flow can be neglected be-

cause guard heaters and insulating material minimize

it. A thermal compound is used to reduce the contact

resistance between the reference and the rock sam-

ples. The temperature drop across the rock sample is

compared to that across the reference sample of
known thermal conductivity. Assuming the heat flow

through the system (stack) to be constant, the un-

known thermal conductivity of the rock sample can be

calculated.

The specific heat capacity is a scalar value and an

isotropic physical property; it increases with tempera-

ture for solid rock material. A heat flux differential

scanning calorimeter (Heat Flux DSC) was used to de-
termine the specific heat capacity of rock samples as a

function of temperature up to 300 �C, the maximum

temperature range of the used device.

Our Heat Flux DSC consists of a block-type cylin-

drical furnace with two cylindrical cavities (Hemminger

and Cammenga, 1989; H€oohne et al., 1996), holding the

sample and reference containers, which are connected to

the furnace with several thermocouples (thermopile).
These containers (measuring systems) are thermally de-

coupled (Calvet, 1948) with a programmable tempera-

ture controller. The characteristic feature of the used

device is the symmetrical (twin-type) design and the

system measuring only the difference in temperature

between the two containers (with thermopiles instru-

mented containers) (Hemminger and Cammenga, 1989;

H€oohne et al., 1996). When the furnace is heated, gen-
erally linearly in time, heat flows between the furnace

and the sample container including a sample as well as

between the furnace and the empty reference container.

The heat flow rates are proportional to the measured

temperatures at the thermopiles. The interesting differ-

ential signal, a small change in the heat flow rate, is

affected by the change of the specific heat capacity of

rock samples. The decisive advantage of the differential
principle is that disturbances, such as temperature

variations in the environment of the measuring system,

affect the two measuring systems equally and are com-

pensated when the difference between the individual

signals is formed (H€oohne et al., 1996). Hemminger and

Cammenga (1989) and H€oohne et al. (1996) offer a de-

tailed description of the used Heat Flux DSC instru-

ment, a comparison to other devices, and the theory of
DSC systems.
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